Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.28.559966

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional NSP14 enzyme, possessing exonuclease and mRNA capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscores the dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Subject(s)
Coronavirus Infections , COVID-19
2.
preprints.org; 2021.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202107.0554.v1

ABSTRACT

The devastating impact of the ongoing coronavirus disease 2019 (COVID-19) on public health, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has made fighting of the COVID-19 pandemic is a top priority in medical research and pharmaceutical development. Surveillance of SARS-CoV-2 mutations is essential for the comprehension of SARS-CoV-2 variant diversity and their impact on virulence and pathogenicity. The SARS-CoV-2 open reading frame 10 (ORF10) protein interacts with multiple human proteins CUL2, ELOB, ELOC, MAP7D1, PPT1, RBX1, THTPA, TIMM8B, and ZYG11B expressed in the lung tissues. Mutations and co-mutations in the emerging SARS-CoV-2 ORF10 variants are expected to impact the severity of the virus and its associated consequences. In this article, We highlight 128 single mutations and 35 co-mutations in the unique SARS-CoV-2 ORF10 variants in this article. The possible predicted effects of these mutations and co-mutations on the secondary structure of ORF10 variants and host protein interactomes are presented. The findings highlight the possible effects of mutations and co-mutations on the emerging 140 ORF10 unique variants from secondary structure and intrinsic protein disorder perspectives.


Subject(s)
Coronavirus Infections , Sleep Disorders, Intrinsic , COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.14.096107

ABSTRACT

A global emergency due to the COVID-19 pandemic demands various studies related to genes and genomes of the SARS-CoV2. Among other important proteins, the role of accessory proteins are of immense importance in replication, regulation of infections of the coronavirus in the hosts. The largest accessory proteins in the SARS-CoV2 genome is ORF3a which modulates the host response to the virus infection and consequently it plays an important role in pathogenesis. In this study, an attempt is made to decipher the conservation of nucleotides, dimers, codons and amino acids in the ORF3a genes across thirty two genomes of Indian patients. ORF3a gene possesses single and double point mutations in Indian SARS-CoV2 genomes suggesting the change of SARS-CoV2s virulence property in Indian patients. We find that the parental origin of the ORF3a gene over the genomes of SARS-CoV2 and Pangolin-CoV is same from the phylogenetic analysis based on conservations of nucleotides and so on. This study highlights the accumulation of mutation on ORF3a in Indian SARS-CoV2 genomes which may provide the designing therapeutic approach against SARS-CoV2.


Subject(s)
COVID-19 , Tumor Virus Infections
SELECTION OF CITATIONS
SEARCH DETAIL